Skip to content

Going Reactive with RxJS

This article was written over 18 months ago and may contain information that is out of date. Some content may be relevant but please refer to the relevant official documentation or available resources for the latest information.

RxJS is the perfect tool for implementing reactive programming paradigms to your software development. In general, software development handling errors gracefully is a fundamental piece of ensuring the integrity of the application as well as ensuring the best possible user experience.

In this article, we will look at how we handle errors with RxJS and then look at how we can use RxJS to build a simple yet performant application.

Handling Errors

Our general approach to errors usually consists of us exclaiming "Oh no! What went wrong?" but it's something that is a common occurrence in all applications. The ability to manage errors well without disrupting the user's experience, while also providing accurate error logs to allow a full diagnosis of the cause of the error, is more important than ever.

RxJS gives us the tools to do this job very well! Let's take a look at some basic error handling approaches with RxJS.

Basic Error Handling

The most basic way of detecting and reacting to an error that has occurred in an Observable stream provided to us by the .subscribe() method.

obs$.subscribe(
    value => console.log("Received Value: ", value),
    error => console.error("Received Error: ", error)
)

Here we can set up two different pieces of logic—one to handle non-error emission from the Observable and one to gracefully handle errors emitted by the Observable.

We could use this to show a Notification Toast or Alert to inform the user that an error has occurred:

obs$.subscribe(
    value => console.log("Received Value: ", value),
    error => showErrorAlert(error)
)

This can help us minimize disruption for the user, giving them instant feedback that something actually hasn't worked as appropriate rather than leaving them to guess.

Composing Useful Errors

Sometimes, however, we may have situations wherein we want to throw an error ourselves. For example, some data we received isn't quite correct, or maybe some validation checks failed.

RxJS provides us with an operator that allows us to do just that. Let's take an example where we are receiving values from an API, but we encounter missing data that will cause other aspects of the app not to function correctly.

obs$
  .pipe(
    mergeMap((value) =>
      !value.id ? throwError("Data does not have an ID") : of(value)
    )
  )
  .subscribe(
    (value) => console.log(value),
    (error) => console.error("error", error)
  );

If we receive a value from the Observable that doesn't contain an ID, we throw an error that we can handle gracefully.

NOTE: Using the throwError will stop any further Observable emissions from being received.

Advanced Error Handling

We've learned that we can handle errors reactively to prevent too much disruption for the user.

But what if we want to do multiple things when we receive an error or even do a retry?

RxJS makes it super simple for us to retry errored Observables with their retry() operator.

Therefore, to create an even cleaner error handling setup in RxJS, we can set up an error management solution that will receive any errors from the Observable, retry them in the hopes of a successful emission, and, failing that, handle the error gracefully.

obs$
  .pipe(
    mergeMap((value) =>
      !value.id ? throwError("Data does not have an ID") : of(value)
    ),
    retry(2),
    catchError((error) => {
        // Handle error gracefully here
      console.error("Error: ", error);
      return EMPTY;
    })
  )
  .subscribe(
    (value) => console.log(value),
    () => console.log("completed")
  );

Once we reach an error, emitting the EMPTY observable will complete the Observable. The output of an error emission above is:

Error:  Data does not have an ID
completed 

Usage in Frontend Development

RxJS can be used anywhere running JavaScript; however, I'd suggest that it's most predominately used in Angular codebases. Using RxJS correctly with Angular can massively increase the performance of your application, and also help you to maintain the Container-Presentational Component Pattern.

Let's see a super simple Todo app in Angular to see how we can use RxJS effectively.

Basic Todo App

We will have two components in this app: the AppComponent and the ToDoComponent. Let's take a look at the ToDoComponent first:

import {
  ChangeDetectionStrategy,
  Component,
  EventEmitter,
  Input,
  Output
} from "@angular/core";

export interface Todo {
  id: number;
  title: string;
}

@Component({
  selector: "todo",
  template: `
    <li>
      {{ item.title }} - <button (click)="delete.emit(item.id)">Delete</button>
    </li>
  `,
  changeDetection: ChangeDetectionStrategy.OnPush
})
export class ToDoComponent {
  @Input() item: Todo;
  @Output() delete = new EventEmitter<number>();
}

Pretty simple, right? It takes an item input and outputs an event when the delete button is clicked. It performs no real logic itself other than rendering the correct HTML.

One thing to note is changeDetection: ChangeDetectionStrategy.OnPush. This tells the Angular Change Detection System that it should only attempt to re-render this component when the Input has changed.

Doing this can increase performance massively in Angular applications and should always be applicable to pure presentational components, as they should only be rendering data.

Now, let's take a look at the AppComponent.

import { Component } from "@angular/core";
import { BehaviorSubject } from "rxjs";
import { Todo } from "./todo.component";

@Component({
  selector: "my-app",
  template: `
    <div>
      <h1>
        ToDo List
      </h1>
      <div style="width: 50%;">
        <ul>
          <todo
            *ngFor="let item of (items$ | async); trackBy: trackById"
            [item]="item"
            (delete)="deleteItem($event)"
          >
          </todo>
        </ul>
        <input #todoTitle placeholder="Add item" /><br />
        <button (click)="addItem(todoTitle.value, todoTitle)">Add</button>
      </div>
    </div>
  `,
  styleUrls: ["./app.component.css"]
})
export class AppComponent {
  private items: Todo[] = [{ id: 1, title: "Learn RxJS" }];
  items$ = new BehaviorSubject<Todo[]>(this.items);

  addItem(title: string, inputEl: HTMLInputElement) {
    const item = {
      id: this.items[this.items.length - 1].id + 1,
      title,
      completed: false
    };
    this.items = [...this.items, item];
    this.items$.next(this.items);

    inputEl.value = "";
  }

  deleteItem(idToRemove: number) {
    this.items = this.items.filter(({ id }) => id !== idToRemove);
    this.items$.next(this.items);
  }

  trackById(index: number, item: Todo) {
    return item.id;
  }
}

This is a container component, and it's called this because it handles the logic relating to updating component state as well as handles or dispatches side effects.

Let's take a look at some areas of interest:

private items: Todo[] = [{ id: 1, title: "Learn RxJS" }];
items$ = new BehaviorSubject<Todo[]>(this.items);

We create a basic local store to store our ToDo items; however, this could be done via a state management system or an API.
We then set up our Observable, which will stream the value of our ToDo list to anyone who subscribes to it.

You may now look over the code and begin to wonder where we have subscribed to items$.

Angular provides a very convenient Pipe that handles this for us. We can see this in the template:

*ngFor="let item of (items$ | async); trackBy: trackById"

In particular, it's the (items$ | async) this will take the latest value emitted from the Observable and provide it to the template. It does much more than this though. It also will manage the subscription for us, meaning when we destroy this container component, it will unsubscribe automatically for us, preventing unexpected outcomes.

Using a pure pipe in Angular also has another performance benefit. It will only ever re-run the code in the Pipe if the input to the pipe changes. In our case, that would mean that item$ would need to change to a whole new Observable for the code in the async pipe to be executed again. We never have to change item$ as our values are then streamed through the Observable.

Conclusion

Hopefully, you have learned both about how to handle errors effectively as well put RxJS into practice into a real-world app that improves the overall performance of your application. You should also start to see the power that using RxJS effectively can bring!

This Dot is a consultancy dedicated to guiding companies through their modernization and digital transformation journeys. Specializing in replatforming, modernizing, and launching new initiatives, we stand out by taking true ownership of your engineering projects.

We love helping teams with projects that have missed their deadlines or helping keep your strategic digital initiatives on course. Check out our case studies and our clients that trust us with their engineering.

You might also like

Incremental Hydration in Angular cover image

Incremental Hydration in Angular

Incremental Hydration in Angular Some time ago, I wrote a post about SSR finally becoming a first-class citizen in Angular. It turns out that the Angular team really treats SSR as a priority, and they have been working tirelessly to make SSR even better. As the previous blog post mentioned, full-page hydration was launched in Angular 16 and made stable in Angular 17, providing a great way to improve your Core Web Vitals. Another feature aimed to help you improve your INP and other Core Web Vitals was introduced in Angular 17: deferrable views. Using the @defer blocks allows you to reduce the initial bundle size and defer the loading of heavy components based on certain triggers, such as the section entering the viewport. Then, in September 2024, the smart folks at Angular figured out that they could build upon those two features, allowing you to mark parts of your application to be server-rendered dehydrated and then hydrate them incrementally when needed - hence incremental hydration. I’m sure you know what hydration is. In short, the server sends fully formed HTML to the client, ensuring that the user sees meaningful content as quickly as possible and once JavaScript is loaded on the client side, the framework will reconcile the rendered DOM with component logic, event handlers, and state - effectively hydrating the server-rendered content. But what exactly does "dehydrated" mean, you might ask? Here's what will happen when you mark a part of your application to be incrementally hydrated: 1. Server-Side Rendering (SSR): The content marked for incremental hydration is rendered on the server. 2. Skipped During Client-Side Bootstrapping: The dehydrated content is not initially hydrated or bootstrapped on the client, reducing initial load time. 3. Dehydrated State: The code for the dehydrated components is excluded from the initial client-side bundle, optimizing performance. 4. Hydration Triggers: The application listens for specified hydration conditions (e.g., on interaction, on viewport), defined with a hydrate trigger in the @defer block. 5. On-Demand Hydration: Once the hydration conditions are met, Angular downloads the necessary code and hydrates the components, allowing them to become interactive without layout shifts. How to Use Incremental Hydration Thanks to Mark Thompson, who recently hosted a feature showcase on incremental hydration, we can show some code. The first step is to enable incremental hydration in your Angular application's appConfig using the provideClientHydration provider function: ` Then, you can mark the components you want to be incrementally hydrated using the @defer block with a hydrate trigger: ` And that's it! You now have a component that will be server-rendered dehydrated and hydrated incrementally when it becomes visible to the user. But what if you want to hydrate the component on interaction or some other trigger? Or maybe you don't want to hydrate the component at all? The same triggers already supported in @defer blocks are available for hydration: - idle: Hydrate once the browser reaches an idle state. - viewport: Hydrate once the component enters the viewport. - interaction: Hydrate once the user interacts with the component through click or keydown triggers. - hover: Hydrate once the user hovers over the component. - immediate: Hydrate immediately when the component is rendered. - timer: Hydrate after a specified time delay. - when: Hydrate when a provided conditional expression is met. And on top of that, there's a new trigger available for hydration: - never: When used, the component will remain static and not hydrated. The never trigger is handy when you want to exclude a component from hydration altogether, making it a completely static part of the page. Personally, I'm very excited about this feature and can't wait to try it out. How about you?...

D1 SQLite: Writing queries with the D1 Client API cover image

D1 SQLite: Writing queries with the D1 Client API

Writing queries with the D1 Client API In the previous post we defined our database schema, got up and running with migrations, and loaded some seed data into our database. In this post we will be working with our new database and seed data. If you want to participate, make sure to follow the steps in the first post. We’ve been taking a minimal approach so far by using only wrangler and sql scripts for our workflow. The D1 Client API has a small surface area. Thanks to the power of SQL, we will have everything we need to construct all types of queries. Before we start writing our queries, let's touch on some important concepts. Prepared statements and parameter binding This is the first section of the docs and it highlights two different ways to write our SQL statements using the client API: prepared and static statements. Best practice is to use prepared statements because they are more performant and prevent SQL injection attacks. So we will write our queries using prepared statements. We need to use parameter binding to build our queries with prepared statements. This is pretty straightforward and there are two variations. By default we add ? ’s to our statement to represent a value to be filled in. The bind method will bind the parameters to each question mark by their index. The first ? is tied to the first parameter in bind, 2nd, etc. I would stick with this most of the time to avoid any confusion. ` I like this second method less as it feels like something I can imagine messing up very innocently. You can add a number directly after a question mark to indicate which number parameter it should be bound to. In this exampl, we reverse the previous binding. ` Reusing prepared statements If we take the first example above and not bind any values we have a statement that can be reused: ` Querying For the purposes of this post we will just build example queries by writing them out directly in our Worker fetch handler. If you are building an app I would recommend building functions or some other abstraction around your queries. select queries Let's write our first query against our data set to get our feet wet. Here’s the initial worker code and a query for all authors: ` We pass our SQL statement into prepare and use the all method to get all the rows. Notice that we are able to pass our types to a generic parameter in all. This allows us to get a fully typed response from our query. We can run our worker with npm run dev and access it at http://localhost:8787 by default. We’ll keep this simple workflow of writing queries and passing them as a json response for inspection in the browser. Opening the page we get our author results. joins Not using an ORM means we have full control over our own destiny. Like anything else though, this has tradeoffs. Let’s look at a query to fetch the list of posts that includes author and tags information. ` Let’s walk through each part of the query and highlight some pros and cons. ` * The query selects all columns from the posts table. * It also selects the name column from the authors table and renames it to author_name. * It aggregates the name column from the tags table into a JSON array. If there are no tags, it returns an empty JSON array. This aggregated result is renamed to tags. ` * The query starts by selecting data from the posts table. * It then joins the authors table to include author information for each post, matching posts to authors using the author_id column in posts and the id column in authors. * Next, it left joins the posts_tags table to include tag associations for each post, ensuring that all posts are included even if they have no tags. * Next, it left joins the tags table to include tag names, matching tags to posts using the tag_id column in posts_tags and the id column in tags. * Finally, group the results by the post id so that all rows with the same post id are combined in a single row SQL provides a lot of power to query our data in interesting ways. JOIN ’s will typically be more performant than performing additional queries.You could just as easily write a simpler version of this query that uses subqueries to fetch post tags and join all the data by hand with JavaScript. This is the nice thing about writing SQL, you’re free to fetch and handle your data how you please. Our results should look similar to this: ` This brings us to our next topic. Marshaling / coercing result data A couple of things we notice about the format of the result data our query provides: Rows are flat. We join the author directly onto the post and prefix its column names with author. ` Using an ORM we might get the data back as a child object: ` Another thing is that our tags data is a JSON string and not a JavaScript array. This means that we will need to parse it ourselves. ` This isn’t the end of the world but it is some more work on our end to coerce the result data into the format that we actually want. This problem is handled in most ORM’s and is their main selling point in my opinion. insert / update / delete Next, let’s write a function that will add a new post to our database. ` There’s a few queries involved in our create post function: * first we create the new post * next we run through the tags and either create or return an existing tag * finally, we add entries to our post_tags join table to associate our new post with the tags assigned We can test our new function by providing post content in query params on our index page and formatting them for our function. ` I gave it a run like this: http://localhost:8787authorId=1&tags=Food%2CReview&title=A+review+of+my+favorite+Italian+restaurant&content=I+got+the+sausage+orchette+and+it+was+amazing.+I+wish+that+instead+of+baby+broccoli+they+used+rapini.+Otherwise+it+was+a+perfect+dish+and+the+vibes+were+great And got a new post with the id 11. UPDATE and DELETE operations are pretty similar to what we’ve seen so far. Most complexity in your queries will be similar to what we’ve seen in the posts query where we want to JOIN or GROUP BY data in various ways. To update the post we can write a query that looks like this: ` COALESCE acts similarly to if we had written a ?? b in JavaScript. If the binded value that we provide is null it will fall back to the default. We can delete our new post with a simple DELETE query: ` Transactions / Batching One thing to note with D1 is that I don’t think the traditional style of SQLite transactions are supported. You can use the db.batch API to achieve similar functionality though. According to the docs: Batched statements are SQL transactions ↗. If a statement in the sequence fails, then an error is returned for that specific statement, and it aborts or rolls back the entire sequence. ` Summary In this post, we've taken a hands-on approach to exploring the D1 Client API, starting with defining our database schema and loading seed data. We then dove into writing queries, covering the basics of prepared statements and parameter binding, before moving on to more complex topics like joins and transactions. We saw how to construct and execute queries to fetch data from our database, including how to handle relationships between tables and marshal result data into a usable format. We also touched on inserting, updating, and deleting data, and how to use transactions to ensure data consistency. By working through these examples, we've gained a solid understanding of how to use the D1 Client API to interact with our database and build robust, data-driven applications....

Best Practices for Managing RxJS Subscriptions cover image

Best Practices for Managing RxJS Subscriptions

When we use RxJS, it's standard practice to subscribe to Observables. By doing so, we create a Subscription. This object provides us with some methods that will aid in managing these subscriptions. This is very important, and is something that should not be overlooked! Why do we care about subscription management? If we do not put some thought into how we manage and clean up the subscriptions we create, we can cause an array of problems in our applications. This is due to how the Observer Pattern is implemented. When an Observable emits a new value, its Observers execute code that was set up during the subscription. For example: ` If we do not manage this subscription, every time obs$ emits a new value doSomethingWithDataReceived will be called. Let's say this code is set up on the Home View of our App. It should only ever be run when the user is on the Home View. Without managing this subscription correctly when the user navigates to a new view in the App, doSomethingWithDataReceived could still be called, potentially causing unexpected results, errors or even hard-to-track bugs. So what do we mean by Subscription Management? Essentially, subscription management revolves around knowing when to complete or unsubscribe from an Observable, to prevent incorrect code from being executed, especially when we would not expect it to be executed. We can refer to this management of subscriptions as cleaning up active subscriptions. How can we clean up subscriptions? So, now that we know that managing subscriptions are an essential part of working with RxJS, what methods are available for us to manage them? Unsubscribing Manually One method we can use, is to unsubscribe manually from active subscriptions when we no longer require them. RxJS provides us with a convenient method to do this. It lives on the Subscription object and is simply called .unsubscribe(). If we take the example we had above; we can see how easy it is to unsubscribe when we need to: ` 1. We create a variable to store the subscription. 2. We store the subscription in a variable when we enter the view. 3. We unsubscribe from the subscription when we leave the view preventing doSomethingWithDataReceived() from being executed when we don't need it. This is great; however, when working with RxJS, you will likely have more than one subscription. Calling unsubscribe for each of them could get tedious. A solution I have seen many codebases employ is to store an array of active subscriptions, loop through this array, unsubscribing from each when required. Let's modify the example above to see how we could do this: ` 1. We create an array to store the subscriptions. 2. We add each subscription to the array when we enter the view. 3. We loop through and unsubscribe from the subscriptions in the array. These are both valid methods of managing subscriptions and can and should be employed when necessary. There are other options however, that can add a bit more resilience to your management of subscriptions. Using Operators RxJS provides us with some operators that will clean up the subscription automatically when a condition is met, meaning we do not need to worry about setting up a variable to track our subscriptions. Let's take a look at some of these! first The first operator will take only the first value emitted, or the first value that meets the specified criteria. Then it will complete, meaning we do not have to worry about manually unsubscribing. Let's see how we would use this with our example above: ` When obs$ emits a value, first() will pass the value to doSomethingWithDataReceived and then unsubscribe! take The take operator allows us to specify how many values we want to receive from the Observable before we unsubscribe. This means that when we receive the specified number of values, take will automatically unsubscribe! ` Once obs$ has emitted five values, take will unsubscribe automatically! takeUntil The takeUntil operator provides us with an option to continue to receive values from an Observable until a different, notifier Observable emits a new value. Let's see it in action: ` 1. We create a notifier$ Observable using a Subject. _(You can learn more about Creating Observables here.)_ 2. We use takeUntil to state that we want to receive values until notifier$ emits a value 3. We tell notifier$ to emit a value and complete _(we need to clean notifer$ up ourselves) when we leave the view, allowing our original subscription to be unsubscribed. takeWhile Another option is the takeWhile operator. It allows us to continue receiving values whilst a specified condition remains true. Once it becomes false, it will unsubscribe automatically. ` In the example above we can see that whilst the property finished on the data emitted is false we will continue to receive values. When it turns to true, takeWhile will unsubscribe! BONUS: With Angular RxJS and Angular go hand-in-hand, even if the Angular team has tried to make the framework as agnostic as possible. From this, we usually find ourselves having to manage subscriptions in some manner. async Pipe Angular itself provides one option for us to manage subscriptions, the async pipe. This pipe will subscribe to an Observable in the template, and when the template is destroyed, it will unsubscribe from the Observable automatically. It's very simple to use: ` By using the as data, we set the value emitted from the Observable to a template variable called data, allowing us to use it elsewhere in the children nodes to the div node. When the template is destroyed, Angular will handle the cleanup! untilDestroyed Another option comes from a third-party library developed by Netanel Basal. It's called until-destroyed, and it provides us with multiple options for cleaning up subscriptions in Angular when Angular destroys a Component. We can use it similarly to takeUntil: ` It can _also_ find which properties in your component are Subscription objects and automatically unsubscribe from them: ` This little library can be beneficial for managing subscriptions for Angular! When should we employ one of these methods? The simple answer to this question would be: > When we no longer want to execute code when the Observable emits a new value But that doesn't give an example use-case. - We have covered one example use case in this article: when you navigate away from a view in your SPA. - In Angular, you'd want to use it when you destroy Components. - Combined with State Management, you could use it only to select a slice of state once that you do not expect to change over the lifecycle of the application. - Generally, you'd want to do it when a condition is met. This condition could be anything from the first click a user makes to when a certain length of time has passed. Next time you're working with RxJS and subscriptions, think about when you no longer want to receive values from an Observable, and ensure you have code that will allow this to happen!...

Vercel & React Native - A New Era of Mobile Development? cover image

Vercel & React Native - A New Era of Mobile Development?

Vercel & React Native - A New Era of Mobile Development? Jared Palmer of Vercel recently announced an acquisition that spiked our interest. Having worked extensively with both Next.js and Vercel, as well as React Native, we were curious to see what the appointment of Fernando Rojo, the creator of Solito, as Vercel's Head of Mobile, would mean for the future of React Native and Vercel. While we can only speculate on what the future holds, we can look closer at Solito and its current integration with Vercel. Based on the information available, we can also make some educated guesses about what the future might hold for React Native and Vercel. What is Solito? Based on a recent tweet by Guillermo Rauch, one might assume that Solito allows you to build mobile apps with Next.js. While that might become a reality in the future, Jamon Holmgren, the CTO of Infinite Red, added some context to the conversation. According to Jamon, Solito is a cross-platform framework built on top of two existing technologies: - For the web, Solito leverages Next.js. - For mobile, Solito takes advantage of Expo. That means that, at the moment, you can't build mobile apps using Next.js & Solito only - you still need Expo and React Native. Even Jamon, however, admits that even the current integration of Solito with Vercel is exciting. Let's take a closer look at what Solito is according to its official website: > This library is two things: > > 1. A tiny wrapper around React Navigation and Next.js that lets you share navigation code across platforms. > > 2. A set of patterns and examples for building cross-platform apps with React Native + Next.js. We can see that Jamon was right - Solito allows you to share navigation code between Next.js and React Native and provides some patterns and components that you can use to build cross-platform apps, but it doesn't replace React Native or Expo. The Cross-Platformness of Solito So, we know Solito provides a way to share navigation and some patterns between Next.js and React Native. But what precisely does that entail? Cross-Platform Hooks and Components If you look at Solito's documentation, you'll see that it's not only navigation you can share between Next.js and React Native. There are a few components that wrap Next.js components and make them available in React Native: - Link - a component that wraps Next.js' Link component and allows you to navigate between screens in React Native. - TextLink - a component that also wraps Next.js' Link component but accepts text nodes as children. - MotiLink - a component that wraps Next.js' Link component and allows you to animate the link using moti, a popular animation library for React Native. - SolitoImage - a component that wraps Next.js' Image component and allows you to display images in React Native. On top of that, Solito provides a few hooks that you can use for shared routing and navigation: - useRouter() - a hook that lets you navigate between screens across platforms using URLs and Next.js Url objects. - useLink() - a hook that lets you create Link components across the two platforms. - createParam() - a function that returns the useParam() and useParams() hooks which allow you to access and update URL parameters across platforms. Shared Logic The Solito starter project is structured as a monorepo containing: - apps/next - the Next.js application. - apps/expo or apps/native - the React Native application. - packages/app - shared packages across the two applications: - features - providers - navigation The shared packages contain the shared logic and components you can use across the two platforms. For example, the features package contains the shared components organized by feature, the providers package contains the shared context providers, and the navigation package includes the shared navigation logic. One of the key principles of Solito is gradual adoption, meaning that if you use Solito and follow the recommended structure and patterns, you can start with a Next.js application only and eventually add a React Native application to the mix. Deployments Deploying the Next.js application built on Solito is as easy as deploying any other Next.js application. You can deploy it to Vercel like any other Next.js application, e.g., by linking your GitHub repository to Vercel and setting up automatic deployments. Deploying the React Native application built on top of Solito to Expo is a little bit more involved - you cannot directly use the Github Action recommended by Expo without some modification as Solito uses a monorepo structure. The adjustment, however, is luckily just a one-liner. You just need to add the working-directory parameter to the eas update --auto command in the Github Action. Here's what the modified part of the Expo Github Action would look like: ` What Does the Future Hold? While we can't predict the future, we can make some educated guesses about what the future might hold for Solito, React Native, Expo, and Vercel, given what we know about the current state of Solito and the recent acquisition of Fernando Rojo by Vercel. A Competitor to Expo? One question that comes to mind is whether Vercel will work towards creating a competitor to Expo. While it's too early to tell, it's not entirely out of the question. Vercel has been expanding its offering beyond Next.js and static sites, and it's not hard to imagine that it might want to provide a more integrated, frictionless solution for building mobile apps, further bridging the gap between web and mobile development. However, Expo is a mature and well-established platform, and building a mobile app toolchain from scratch is no trivial task. It would be easier for Vercel to build on top of Expo and partner with them to provide a more integrated solution for building mobile apps with Next.js. Furthermore, we need to consider Vercel's target audience. Most of Vercel's customers are focused on web development with Next.js, and switching to a mobile-first approach might not be in their best interest. That being said, Vercel has been expanding its offering to cater to a broader audience, and providing a more integrated solution for building mobile apps might be a step in that direction. A Cross-Platform Framework for Mobile Apps with Next.js? Imagine a future where you write your entire application in Next.js — using its routing, file structure, and dev tools — and still produce native mobile apps for iOS and Android. It's unlikely such functionality would be built from scratch. It would likely still rely on React Native + Expo to handle the actual native modules, build processes, and distribution. From the developer’s point of view, however, it would still feel like writing Next.js. While this idea sounds exciting, it's not likely to happen in the near future. Building a cross-platform framework that allows you to build mobile apps with Next.js only would require a lot of work and coordination between Vercel, Expo, and the React Native community. Furthermore, there are some conceptual differences between Next.js and React Native that would need to be addressed, such as Next.js being primarily SSR-oriented and native mobile apps running on the client. Vercel Building on Top of Solito? One of the more likely scenarios is that Vercel will build on top of Solito to provide a more integrated solution for building mobile apps with Next.js. This could involve providing more components, hooks, and patterns for building cross-platform apps, as well as improving the deployment process for React Native applications built on top of Solito. A potential partnership between Vercel and Expo, or at least some kind of closer integration, could also be in the cards in this scenario. While Expo already provides a robust infrastructure for building mobile apps, Vercel could provide complementary services or features that make it easier to build mobile apps on top of Solito. Conclusion Some news regarding Vercel and mobile development is very likely on the horizon. After all, Guillermo Rauch, the CEO of Vercel, has himself stated that Vercel will keep raising the quality bar of the mobile and web ecosystems. While it's unlikely we'll see a full-fledged mobile app framework built on top of Next.js or a direct competitor to Expo in the near future, it's not hard to imagine that Vercel will provide more tools and services for building mobile apps with Next.js. Solito is a step in that direction, and it's exciting to see what the future holds for mobile development with Vercel....

Let's innovate together!

We're ready to be your trusted technical partners in your digital innovation journey.

Whether it's modernization or custom software solutions, our team of experts can guide you through best practices and how to build scalable, performant software that lasts.

Prefer email? hi@thisdot.co